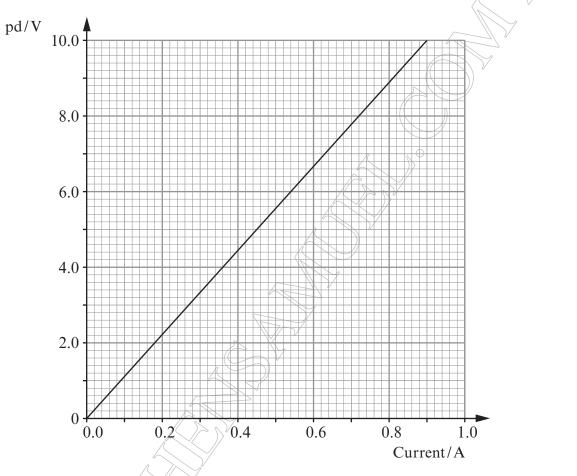

4. (a) By referring to the diagrams, discuss some of the energy changes involved in a bungee jump. You should make reference to *gravitational potential energy*, *kinetic energy* and *elastic potential energy* in your answer. [5]

A	D	C	
A At the start	B Eree fall cord slack	C Cord stretching	D At the lowest point
At the start	Free fall, cord slack	Cord stretching	At the lowest point
c wi		21-01)	


(b)	A bungee jumper of mass 70 kg jumps from a high bridge using a bungee cord of natural length 80 m. When he reaches the lowest point for the first time the length of the cord is 130 m. Calculate			
	(i)	the loss of gravitational potential energy from his position on the bridge to the lowest point for the first time, [2]		
	.			
	.			
	••••••			
	(ii)	the stiffness constant (k) of the bungee cord assuming the cord obeys Hooke's law		
	(11)	and that there are no losses due to air resistance, $[3]$		
	••••••			
	••••••			
	••••••			
	(iii)	the extension of the cord when he finally comes to rest (after having 'bounced' a		
		few times). [2]		
	.			
	R			
	X	V.		
	7			
$\langle \rangle \rangle$				

5. The astronauts of Apollo 14 played golf on the Moon. They struck a number of shots such as the one shown below.

16 m s 40° Calculate the horizontal and vertical components of velocity of the golf ball at the (a)(i) instant it was struck. [2] Describe the essential difference between the horizontal and vertical components (ii) of velocity during the flight of the ball. [1]

- 6. Experiments are carried out to determine the material from which a metal wire is made. Initially the resistivity of the metal is found. The wire's density is then determined and the results compared with known values of resistivity and density.
 - (a) As a first step to finding the resistivity, an experiment investigates the relationship between pd and current for the wire. The results are shown in the graph.

(i) Draw a circuit diagram to show how the above results could be obtained. The apparatus available includes a battery, a switch, a variable resistor, an ammeter and a voltmeter. [2]

7. The force due to air resistance F_{air} exerted on a skydiver due to her motion through the air is given by

13

$$F_{\rm air} = \frac{\rho D v^2}{2}$$

where ρ is the density of air, v is the speed of the skydiver and D is a constant called the drag factor.

Show that the SI unit of D is metre². [4] (a)*(b)* The diagram shows two of the main forces acting on the skydiver during her descent. air Weight Newton's third law concerns pairs of forces. State the law. (i) [1] (ii) Give one reason why the forces in the diagram are not a pair of Newton 3rd law forces. [1]

14 Examiner only The table gives data for the first 16.0 seconds of the jump. (c)Time / s 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 Acceleration / $m s^{-2}$ 9.8 8.8 4.3 2.5 0.8 0.4 0.2 6.6 1.4 The mass of the skydiver is 60 kg. Calculate her weight. (i) [1] Using your answer to (c)(i) and the information in the table, calculate the force (ii) due to air resistance acting on the skydiver at t = 10.0 s. [3] (d)Draw a graph of acceleration (y)-axis) against time (x-axis) for the skydiver. (i) [3]

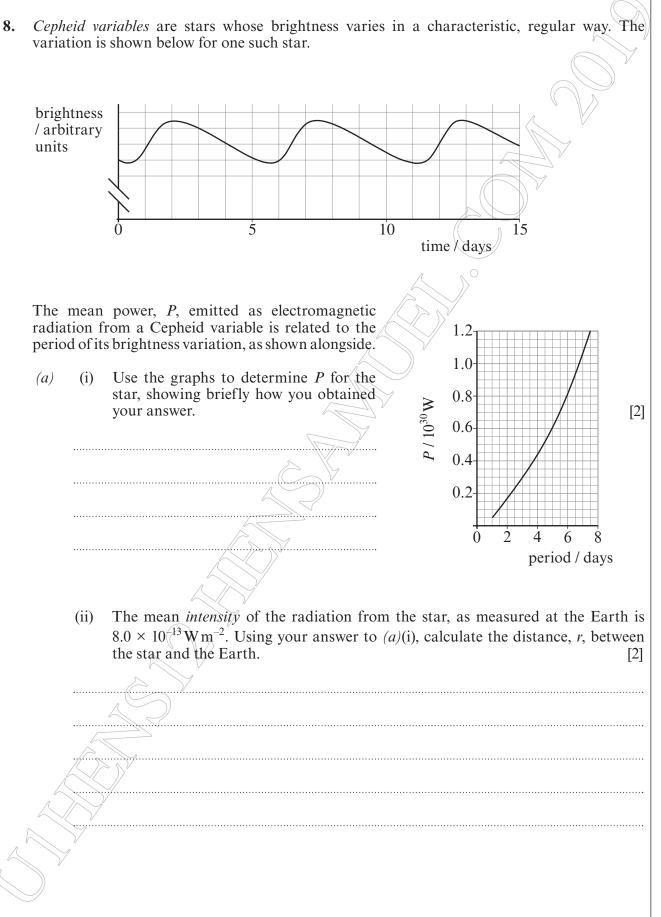
(ii)

(iii)

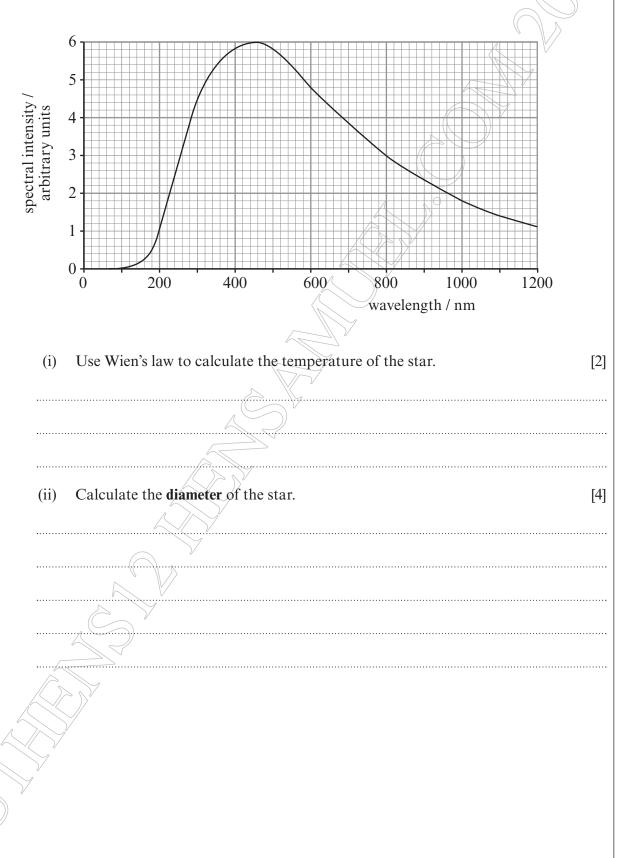
.....

.....

.....


15	
Use your graph to estimate the velocity of the skydiver at $t = 10.0$ s	. [2]
Л	
	\searrow
Using your answers to $(c)(ii)$, $(d)(ii)$ and the equation given at a question, calculate a value for the drag factor, D. Assume $p = 1.2$ k	the start of the $g m^{-3}$ [2]

Examiner only


.....

/(....)>..../)/.....

THERE ARE NO MORE QUESTIONS IN THE EXAMINATION.

(b) The maximum power emitted by the star during its cycle of variation is estimated to be 9.5×10^{29} W, and the spectrum of its radiation corresponding to this point in its cycle is given below.

9.

(a)

(b)

(c)

 $e^- + e^+ \longrightarrow \gamma + \gamma$

An electron and a positron can annihilate (destroy) each other, in this interaction:

Examiner only

Explain how lepton number is conserved in this interaction. [2] (i) State which force (strong, weak or electromagnetic) is involved in this interaction, (ii) giving a reason for your answer. [1] A proton and an antiproton can annihilate each other, in this strong interaction: $p + \overline{p} \longrightarrow \pi^+ + x$ By applying conservation rules, suggest the identity of particle x. [2] The π^+ is unstable. It can decay, thus: \rightarrow y + v (i) Identify y [1] (ii) Which force is involved? [1] Show below, as an equation, how the π^- might decay. [1] THERE ARE NO MORE QUESTIONS IN THE EXAMINATION.

© WJEC CBAC Ltd.

(1322-01)

SOLIDS UNDER STRESS

a)	Why is it useful to know the Youngs Modulus of a material? Give an example.	[5]
b)	Describe some differences between crystalline, amorphous and polymeric.	
	Give examples of each.	[6]

RADIATION FROM STARS

Radiation from a distant star can be intercepted by a gas/dust cloud. What happens to this light and how might it appear in the light we observe? What can we learn from such light? [8]